Exercise recommendations for osteoporosis

A position statement of the Australian and New Zealand Bone and Mineral Society

BACKGROUND Individuals diagnosed with osteoporosis have a high risk of skeletal injury. Regular physical activity may contribute to preventing osteoporosis, but the efficacy of exercise intervention once the disease is established has not been rigorously investigated.

OBJECTIVE To provide recommendations focusing specifically on exercise goals for osteoporosis, taking into account evidence for maximisation and maintenance of bone strength and minimisation of trauma, and to identify the levels of evidence that support this.

DISCUSSION The primary benefit of exercise for adult bones is conservation, not acquisition. In elderly individuals, improved fitness and muscle strength contribute to the prevention of falls and a lower risk of fracture. Physical activity may also reduce the rate of bone loss. Exercise goals for osteoporosis should include pain reduction, increased mobility and improvements in muscle endurance, balance and stability. These are worthwhile end points because not only may they prevent falls but they may improve the quality of life. In conjunction with advice to increase dietary calcium, exercise plays a significant part in a lifestyle prescription for reducing fractures in later life. In postmenopausal women, although less effective than oestrogen for maintaining bone mineral density, exercise should be regarded as part of an overall treatment strategy.

Mark R Forwood, PhD, is a lecturer, Department of Anatomical Sciences, The University of Queensland. Judy A Larsen, BPhy MAPA, is a physiotherapist, St Andrews Hydrotherapy Centre, Brisbane, Queensland.

An optimal model for prevention of osteoporotic fractures includes maximising and maintaining bone strength, and minimising trauma. Regular physical activity can contribute to each of these determinants, but with different outcomes over a lifespan. Physical activity is a determinant of peak bone mass. Sufficient exercise during childhood and adolescence, particularly the prepubertal years, is more effective for increasing bone mass and strength than exercise in adulthood. Whether benefits achieved before puberty are sustained into adulthood remains to be determined by appropriate longitudinal studies. Conversely, the primary benefit of exercise on the bones of adults is conservation, not acquisition. In elderly individuals, exercise can reduce the rate of bone loss and improved fitness and muscle strength contribute to prevention of falls and a lower risk of fracture.

Disuse results in a loss of bone mass from the skeleton. The minimum amount of activity needed to minimise such loss is unknown. Precise prescriptions of exercise in relation to osteoporosis must await the outcome of well designed, longitudinal studies. Based on available evidence, general recommendations for physical activity can be made according to the goal of the activity program and the fracture risk of the individual. For example, asymptomatic individuals with normal bone mineral density (BMD) have a low risk of fracture and could be directed to more vigorous exercise to help maintain bone mass. Patients with osteoporosis and/or a history of a traumatic fracture are at high risk. There is no evidence that vigorous weight bearing exercise will correct this condition, and it could theoretically cause more fractures. In this group, modified physical activity will be necessary with a primary focus on minimising trauma, rather than building bone mass.
Exercise recommendations for osteoporosis

Primary goals should focus on:
- improved fitness
- muscle strength
- posture.

Physical inactivity, postural instability and muscle weakness are independent contributors to the risk of fracture.20 Moreover, improvements in muscular strength and endurance, balance and stability, reaction and movement time decrease the predisposition to fall.21-23 A combination of aerobic and resistance (strength training) exercises provides a balanced program which is safe.24 (Figures 1-4). Acivities such as walking, tai chi, dance routines or exercise tapes for 20-30 minutes, 2-3 times per week can improve fitness, muscle strength and balance.25,26 Free weights attached to the limbs, or rubber tubes attached to a secure object can be used for muscle training (Figures 2, 4). For strength training, a single set program of 8-10 exercises, performed a minimum of two times per week is recommended over multiple set programs because it is less time consuming, more efficient and produces most of the health and fitness benefits.26,27

Targeted exercise programs have a greater impact than general programs for preventing falls17,18 and they can significantly improve the quality of life and level of daily function.27 To this end, postural exercises to increase back extensor strength, to correct forward head posture, and maintain and improve shoulder range of motion and trunk stability should be considered on an individual basis.24,28 Individuals who are frail, severely kyphotic, or suffer from pain or poor balance may benefit from water exercise (hydrotherapy) or home based activities of low intensity (Figure 4b).24 Due to increased skeletal fragility, exercises should be chosen to avoid adverse events. Patients with a diagnosis of osteoporosis should be discouraged from high impact loading.14,15

Exercise and osteoporosis

Table 1. Exercise goals for osteoporosis

- Muscle strength and endurance
- Balance and stability
- Mobility and quality of life
- Prevention of falls

Table 2. Exercises to avoid in osteoporosis

- Dynamic abdominal exercises (eg. situps)
- Twisting movements (eg. golf swing)
- Trunk flexion
- Abrupt or explosive loading
- High impact loading

Table 3. Exercise for bone maintenance in adults

Aims
- Maintain muscle strength and fitness
- Maintain balance, stability and coordination
- Maintain bone mass

Methods
- Include upper, lower limb and trunk (site specificity)
- Maintain regular exercise or physical activity (benefits are lost if training is discontinued)
- Exercise 2–3 times per week for:
 - 15–60 minutes (aerobic) and/or
 - a single set of 8–10 exercises (strength training)
- Exercise at 70–80% functional capacity or maximum strength (exercise intensity)
- Perform weight bearing activities and strength training for aerobic conditioning, muscle strength and bone mass. Include exercises for balance, flexibility and coordination
Exercise recommendations for osteoporosis

Exercise to maximise or maintain bone mass

In healthy adults, vigorous exercise programs and resistance training of moderate to high intensity can preserve bone density10,16 or result in modest (1-3%) increases in bone mineral content at clinically relevant sites.5,11–13,15,36,38 The positive effects of physical activity are site specific4,7,39 and may also depend on moderate to high calcium intakes (>1000 mg/day)40,41 but this is yet to be proven in randomised controlled clinical trials. Weight bearing physical activity is important for maintenance of bone mass12,42 and activities that increase muscle strength are also safe and beneficial, particularly for bones of the upper limb12,36,39. An optimal exercise program should include activities for increasing strength, balance, flexibility and coordination of the upper and lower limbs and trunk.12

To influence BMD, physical activities of sufficient intensity undertaken two or three times per week may be sufficient frequency.1,12,14 Training intensities between 70-80% of functional capacity, or maximum strength12,14,36,39 can preserve bone density, but it remains to be determined whether these are optimal for influencing BMD. Low intensity exercise such as walking has minimal effect on BMD.40 In adults, any skeletal benefit accrued from an exercise program will not be sustained if an individual returns to a sedentary lifestyle.6,38

Conclusion

In conjunction with advice to increase dietary calcium, exercise plays a significant part of a lifestyle prescription for reducing fractures in later life. In post-menopausal women, it is less effective than oestrogen for maintaining BMD14,43 and should be regarded as part of an overall treatment strategy.

Levels of evidence

A large volume of literature exists with respect to skeletal adaptations to exercise. Evidence for the statements made in this article were graded according to the NH&MRC system for assessing the level of evidence44 and studies were included on this basis.

- Level 1 evidence is a systematic review of all randomised, controlled trials, and represents the gold standard: references 5, 7, 10, 11, 12, 13, 14, 36, 39.
- Level 2 evidence is obtained from at least one properly randomised trial: references 17, 26, 37.
- Level 3 is obtained from well designed trials without randomisation, or from well designed cohort or case control studies: references 3, 4, 8, 15, 16, 18, 19, 20, 21, 22, 25, 28, 30, 31, 38, 40, 42.
- Level 4 represents the opinions of respected authorities based on clinical experience, descriptive studies or reports of expert communities: references 32, 33, 35, 43.

Acknowledgments

We thank the many members of ANZBMS and the Medical and Scientific Advisory Board of Osteoporosis Australia for critical comments on early drafts of the manuscript.

References

Exercise recommendations for osteoporosis

• Targeted exercise programs have a significant, albeit site specific, effect on bone mineral content and muscle strength in women: a cross-sectional study. Bone 1992; 13:191–195.

• Exercise for improving bone mass in normal adults may not be appropriate for individuals with osteoporosis.

• Primary exercise goals for osteoporosis should focus on preventing falls via improved fitness, muscle strength, posture, balance and stability.

• Targeted exercise programs have a greater impact than general programs for preventing falls.

• Frail individuals with poor posture, pain, poor balance and mobility or other comorbidities may benefit from water exercise.

REPRINT REQUESTS
Mark R Forwood
Department of Anatomical Sciences
The University of Queensland
Brisbane, Qld 4072
Fax: (07) 3365 1299
Email: m.forwood@mailbox.uq.edu.au